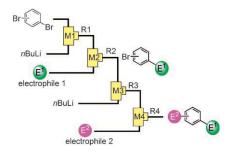
SPOTLIGHTS ...


Micro Flow Synthesis

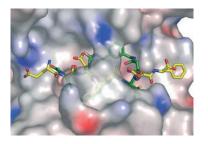
A. Nagaki, Y. Tomida, H. Usutani, H. Kim, N. Takabayashi, T. Nokami, H. Okamoto, J.-i. Yoshida*

Integrated Micro Flow Synthesis Based on Sequential Br-Li Exchange Reactions of p-, m-, and o-Dibromobenzenes

Chem. Asian J.

DOI: 10.1002/asia.200700231

On... and on... and on... A variety of *p*-, *m*-, and *o*-disubstituted benzenes can be synthesized based on the Br–Li exchange reaction of the corresponding dibromobenzene by using a micro flow system. This method allows the use of much higher temperatures than are required for conventional macro batch systems.


Inhibitors

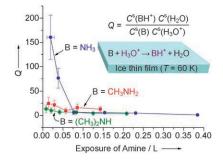
A. Barazza, M. Götz,
S. A. Cadamuro, P. Goettig,
M. Willem, H. Steuber, T. Kohler,
A. Jestel, P. Reinemer, C. Renner,
W. Bode, L. Moroder*

Macrocyclic Statine-Based Inhibitors of BACE-1

ChemBioChem

DOI: 10.1002/cbic.200700383

Hitting BACE. A 23-membered macrocyclic inhibitor of BACE-1 containing statine as a transition state analogue in the ring structure (green) was found to bind with the peptide backbone in an extended conformation to the active-site cleft, in a manner almost identical to that of a substratederived linear hydroxyethylene-octapeptide (yellow), without steric clashes with the flap domain.


Acid/Base Chemistry

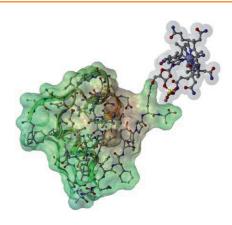
S.-C. Park, J.-K. Kim, C.-W. Lee, E.-S. Moon, H. Kang*

Acid-Base Chemistry at the Ice Surface: Reverse Correlation Between Intrinsic Basicity and Proton-Transfer Efficiency to Ammonia and Methyl Amines

ChemPhysChem

DOI: 10.1002/cphc.200700489

On thin ice: A surface-sensitive mass spectrometric method quantifies the efficiency of proton transfer from the hydronium ion to amine molecules (B) at the ice surface. The proton-transfer efficiency defined by reaction quotient Q (see figure), exhibits the order $NH_3 > (CH_3)NH_2 = (CH_3)_2NH$, which opposes the trend of amine basicity in the gas phase or aqueous solution.

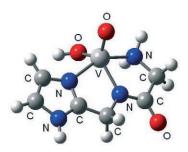

Bioconjugates

A. K. Petrus, A. R. Vortherms, T. J. Fairchild,* R. P. Doyle*

Vitamin B_{12} as a Carrier for the Oral Delivery of Insulin

ChemMedChem

DOI: 10.1002/cmdc.200700239



The noninvasive delivery of insulin

continues to be a major goal for the treatment of diabetes mellitus. Oralenteric administration would make insulin delivery easier and more effective, as higher patient compliance and improved glycemic control are likely; yet the oral-enteric pathway has been unfeasible owing to insulin's susceptibility to proteolytic degradation and inefficient enteric uptake. Herein we show that a noninvasive oral delivery route for insulin is possible through the vitamin B₁₂ uptake pathway. In diabetic rat models, insulin-B₁₂ conjugates can significantly lower blood glucose levels when administered orally.

... ON OUR SISTER JOURNALS

Simple bis(imidazol-2-yl) derivatives form mono- and bis-chelate complexes under acidic and neutral conditions with the V^{IV}O ion. The bis-chelates show *cis-trans* isomerism. With bis(imidazol-2-yl) amino acid derivatives the complexation process takes place also in the basic pH range with the deprotonation and coordination of the amide nitrogen to give VOLH₋₁ and VOLH₋₂.

Vanadium Coordination Chemistry

K. Várnagy, T. Csorba, D. Kiss, E. Garribba,* G. Micera,* D. Sanna

V^{IV}O Complexes of Bis(imidazol-2-yl) Derivatives: A Potentiometric, Spectroscopic and DFT Study

Eur. J. Inorg. Chem.

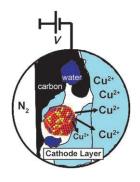
DOI: 10.1002/ejic.200700502

$C_{12}H_{25}O$ $C_{12}H_{25}O$ $C_{12}H_{25}O$ $C_{12}H_{25}O$ $OC_{12}H_{25}$ $OC_{12}H_{25}$ $OC_{12}H_{25}$

Spare the rod but don't spoil the triplet! Increasing the length of supposedly highly conjugated molecular rods does not necessarily lead to a lowering

of their spectroscopic triplet energies. The synthesis and characterization of molecular rods, such as depicted, is also described.

Conducting Polymers


A. C. Benniston,* A. Harriman,* D. B. Rewinska, S. Yang, Y.-G. Zhi

On the Conjugation Length for Oligo(ethynylnaphthalene)-Based Molecular Rods

Chem. Eur. J.

DOI: 10.1002/chem.200701235

Getting rid of copper: A class of ternary Pt–Cu–Co electrocatalysts for the reduction of oxygen in polymer electrolyte membrane fuel cells shows unprecedented activity improvements over state-of-the-art Pt catalysts. The active phase of the catalysts is synthesized by selective electrochemical dissolution (dealloying, see picture) of Cu-rich alloy-particle precursors, resulting in Pt-enriched core–shell particles.

Electrocatalysis

R. Srivastava, P. Mani, N. Hahn, P. Strasser*

Efficient Oxygen Reduction Fuel Cell Electrocatalysis on Voltammetrically Dealloyed Pt-Cu-Co Nanoparticles

Angew. Chem. Int. Ed. DOI: 10.1002/anie.200703331

On these pages, we feature a selection of the excellent work that has recently been published in our sister journals. If you are reading these pages on a computer, click on any of

the items to read the full article. Otherwise please see the DOIs for easy online access through Wiley InterScience.